
Acta Cryst. (1968). B24, 947 

A Filter Technique in Least- Squares Refinement of Crystal Structures 

BY C. SCHERINGER 

Institut fftr Kristallographie der Technischen Hochschule, Aachen, Germany 

(Received 16 June 1967 and in revised form 11 January 1968) 

947 

The idea of filtering parameters by using the eigenvalues of the normal matrix, as first expressed by 
Diamond, is developed for positional parameters in least-squares refinement with X-ray data. With 
filtering, uncorrelated combinations of the parameter shifts are successively admitted to the refinement 
procedure in the order of their efficiency in fitting the data. Before the actual filtering is carried out 
two transformations of the normal equations are necessary: a congruent transformation in order to 
eliminate the contributions to the eigenvalues which arise only from the chosen description of the 
structure, and an orthogonal transformation in order to gain an uncorrelated set of parameter shifts. 
We use filtering as a means of enlarging the range of convergence. The efficiency of the filter technique 
is demonstrated by computed refinements of some trial structures of the known structures of phenol 
and 1,3,5-triphenylbenzene. Here filtering is applied to a set of positional rigid-body and molecular 
parameters. A mean total range of convergence of 1.0-1.2 A. has been found to exist for the two struc- 
tures, which is about 0.1-0.2 A_ larger than without filtering. 

1. Introduction 

In trying to fit chains of protein molecules to a given 
set of clearly recognized points of an electron density 
map, Diamond (1966) proposed a least-squares method 
of filtering a set of parameter shifts according to the 
magnitude of the eigenvalues of the normal matrix. 
The conventional parameters are transformed in order 
to diagonalize the normal matrix, and those 'eigen- 
shifts' which are most effective in reducing the residual 
are admitted first, the remaining shifts being set to zero. 
In the course of the refinement the remaining shifts 
are successively admitted. Diamond calls this succes- 
sive admission of parameters a 'sliding filter technique'. 
Filtering can enlarge the range and the speed of con- 
vergence; Diamond has tried to show this theoretically, 
and confirmed it numerically for his problcm. 

We raise the question of how much use can be made 
of the method in the refinement of crystal structures 
with X-ray data. In the refinement of single-atom par- 
ameters a certain type of filtering is commonly applied: 
scale factors and perhaps an overall temperature factor 
are refined first, then the positional parameters of the 
heavy atoms, and then those of the light atoms. The 
refinement of temperature factors becomes meaningful 
only when the positional parameters are almost cor- 
rect, otherwise the respective atoms tend to be 'extin- 
guished' through abnormally high temperature factors. 
Thus there is a 'natural '  order for the admission of 
parameters. 

In trying to apply Diamond's (1966, § 2.2.3) theory 
of filtering to the refinement with structure-factor data, 
we found that this theory was not correctly established. 
Diamond made physical assumptions which do not 
apply, and at the same time sidestepped a basic dif- 
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ficulty which is inherent in every filter technique based 
on the magnitude of the eigenvalues of the normal 
matrix. In this paper we shall solve the problem for 
the refinement of positional parameters with X-ray 
data. We shall deal with filtering only as a means of 
achieving a maximum range of convergence. Diamond 
(1958, 1966) also used filtering for other purposes. 

2. Basic principles of filtering 

A filter procedure, based on the magnitude of the eigen- 
values of the normal matrix, is subject to the following 
difficulty: One may transform the given set of param- 
eters at will, since this only results in another descrip- 
tion of the least-squares problem (the parameters of 
which are not always physically concrete) and does not 
affect convergence. (For example, the positional par- 
ameters may be expressed in lattice units or /~ . )  The 
spectrum of the eigenvalues may, however, completely 
be altered by such a (congruent) transformation. Hence 
the filter procedure can be influenced at will by choos- 
ing a corresponding description of the structure. (It is, 
for example, always possible to transform a given set 
of parameters in such a way that the normal matrix 
becomes equal to the unit matrix. In this case filtering 
would no longer be possible at all.) Thus the question 
arises: Which description of the least-squares problem 
has to be chosen that a filter procedure, based on the 
magnitudes of the eigenvalues of the normal matrix, 
becomes a physically meaningful process, and so en- 
larges the range of convergence? 

The answer to the above question would be trivial 
if the polydimensional parameter space were a metric 
space, in the sense that a metric fundamental tensor 
exists. (By 'exist' we mean that the components of the 
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metric tensor can in principle be determined experi- 
mentally, in a similar way to determining, for example, 
the lattice constants of a crystal. We do not mean that 
the metric tensor can be formally defined, which is 
always possible.) For a filter procedure one would have 
to determine the metric of the parameter space, and 
then transform to an orthonormal metric. The normal 
matrix would then be a symmetric tensor, and filtering 
would mean selecting the principal components of this 
tensor. 

Since there is no metric in parameter space which 
can be determined experimentally-except for the metric 
of the unit cell - we have to apply a condition which 
can only be derived from the particular type of data 
that have been collected experimentally. The condition 
is that the physical quantity which is relevant in the 
data-collection experiment is expressed in a uniform 
scale (in the space in which it can be measured). Then 
the parameters which are attached to that physical 
quantity, and which occur in the same physical space, 
will also be expressed in a uniform scale. We may call 
this the 'orthonormal condition'. (For X-ray data the 
relevant physical quantity is the scattering power of the 
atoms, and the parameters of the atoms - or groups 
of atoms - are in  the first instance attached to and 
determined via the scattering power.) The 'orthonormal 
condition' implies that the set of parameters which is 
to be filtered is physically homogeneous (for example, 
that all parameters are positional parameters). This is 
also a formal requirement, as in the filter procedure 
a linear combination of the pi~rameter shifts is formed. 
When the 'orthonormal condition' is obeyed the diag- 
onal elements of the actual normal matrix, and the 
eigenvalues which are to be filtered, tend to become 
large because of (1) the contributions of the relevant 
physical quantity (for X-ray data because of the con- 
tributions of the atomic scattering factors) and (2) the 
amount and weights of the data used. Thus the 'ortho- 
normal condition' is sufficient to put the filter technique 
on a physically sound basis. 

From the above considerations we may now criticize 
Diamond's (1966, § 2.2.3) theory of filtering. Diamond 
assumes that a metric exists in parameter space, and 
further, that this metric is orthonormal. This is obvious 
as Diamond speaks of a 'rotated set of axes' and of 
'principal axes of an ellipsoid' in parameter space. 
Diamond calls the square root of the sum of the squares 
of the eigenshifts a 'distance' in parameter space, and 
he relates this 'distance' to the 'strain energy imposed 
on the structure'. The assumption of a metric in this 
sense relieves Diamond from considering the nature of 
his experimental data; the particular type of data has 
not been taken into account in his theory. Furthermore, 
the set of parameters is not required to be physically 
homogeneous. Therefore Diamond's theory appears to 
be completely general and applicable to every least- 
squares problem. Diamond himself applied his theory 
to two different kinds of least-squares problem (cf. 
Diamond, 1958, 1966). In his model building procedure 

he uses angular parameters in units of radians. He does 
not explain what he understands conceptually (as op- 
posed to mathematically) by a 'distance' in parameter 
space and how, in principle, he would measure it. We 
conclude that Diamond's theory is not correctly estab- 
lished as his basic assumption of a metric in param- 
eter space does not apply. 

Recently Bruton & Woodward (1967) have also de- 
scribed the filter procedure for the determination of 
force constants. These authors also do not recognize 
the problem of choosing the appropriate description 
of the least-squares problem, and in their treatment 
the normal matrix which is diagonalized and filtered, 
is set up with the 'natural parameters' of the problem. 
In Bruton & Woodward's discussion it is clearly as- 
sumed that the various directions of parameter space 
are expressed in a uniform scale, but a suggestion or 
even a proof that the 'orthonormal condition' does 
indeed hold with the parameters used is not given. 
Bruton & Woodward's numerical success, however, 
implies that in this case it does hold to a satisfactory 
extent. 

As a second point of criticism we refer to Diamond's 
derivation of the convergence behaviour. Even if Dia- 
mond's assumption of an orthonormal metric in par- 
ameter space would hold, we could not accept his - 
derivation of the 'dominant eigenvectors' possessing 
the largest range of convergence. In his proof Diamond 
assumed that small eigenshifts belong to large eigen- 
values (cf also Diamond § 2.2.3 'each s~ is propor- 
tional to 2i-u2' ). This, however, is not generally true 
because the right-hand side of the normal equations, 
whose magnitude cannot be estimated, destroys such 
a correspondence. We have examined the magnitudes 
of eigenvalues and eigenshifts in some computed re- 
finements. In one case the largest eigenshift belonged 
even to the largest eigenvalue. In the mean over 32 
cycles an eigenshift of medium magnitude belonged to 
the largest eigenvalue. With small eigenvalues we often 
found large eigenshifts, but by no means in every case. 
We concede that there may exist a slight tendency for 
small (large) eigenshifts to belong to large (small) 
eigenvalues. We shall discuss the convergence prop- 
erties of the 'dominant eigenvectors' in § 3. 

3. Filtering in structure refinement 

For pure translation parameters the metric of the unit 
cell already determines the transformation of the initial 
set of parameters: One has to express the translation 
parameters in a Cartesian coordinate system. In this 
case we need not know the scattering power of the 
individual atoms explicitly, as the metric of the unit 
cell determines the transformation of both the scatter- 
ing power and the parameter shifts. However, we need 
an explicit measure of the scattering power for the 
transformation of angular parameters. 

We shall measure the scattering power in units of 
Z a (Z=  number of electrons of the atom). Z z is roughly 



C. S C H E R I N G E R  949 

proportional to the total intensity radiated by an atom, 
and it is well known to be a rough measure of the 
efficiency of an atom in the determination of crystal 
structures (see e.g. Lipson & Cochran, 1953). This 
formal measure of the scattering power is only ap- 
proximately true, but it is the only one which we are 
able to give in advance (as long as the structure is 
unknown). With units of Z 2 we neglect anisotropic 
scattering factors (thermal vibrations, etc.), and dif- 
ferent scattering curves for the various types of atom. 
We first confirm that, neglecting these factors, the nor- 
mal matrix displays the units of Z 2 for the positional 
parameters of the single atoms. It has been shown 
(Scheringer, 1965, 1968) that, with an ideal set of data 
(isotropic and of infinite density in reciprocal space), 
the normal matrix is a block-diagonal matrix consisting 
of 3 x 3-blocks. For a general metric of the unit cell, 
being defined by the metric tensor g, the ith block, 
referring to the ith atom, is equal to Z 2. g. For an 
orthonormal metric of the unit cell it reduces to three 
diagonal elements of Z 2. (This incidentally shows that 
the scattering power, as it appears in the elements of 
the normal matrix, obeys the correct law of transfor- 
mation: It transforms in the same way as the metric 
tensor of the unit cell.) For the translation parameters 
of a rigid group we obtain diagonal elements propor- 
tional to N Z 2 and zero off-diagonal elements, with 
an orthonormal metric of the unit cell. 

For angular parameters, however, we cannot expect 
that the scattering power will appear in units of Z 2 
in the diagonal elements of the normal matrix, because 
angular units of 2n are usually not comparable with 
,A. units, and because the various atoms of a group are 
usually located at various distances ri from the axis 
of rotation. We obtain the correct scale of the scatter- 
ing power for an angular parameter, if we represent 
it as a translation parameter and apply the 'orthonor- 
real condition'. For small angular shifts we treat the 
motion of the atoms on the arcs as linear. The mean 
distance (over all atoms of the group) i from the rota- 
tion axis is then determined from the condition that, 
for an ideal set of data, the diagonal element becomes 
proportional to N Z~. If we introduce the formal an- 
gular measure ~0~, the diagonal element turns out to 
be proportional to ~Fr21ZZ/r2. (This is shown in the 
Appendix. In the summation all those atoms which 
are not actually moved by the rotation - since they lie 
on or very close to the axis - must be excluded.) Thus 
the 'orthonormal condition' leads to the introduction 
of a new angular measure ~0~" for each angular param- 
eter, where 

~ = ( X  2 2 r , Z , / Z  Z2)'/z (1) 

The transformations for parameters, which are reduced 
by equations of constraint (Scheringer, 1965), can be 
derived in a similar manner. These transformations are 
listed in the second part of the Appendix. 

We sum up the steps which have to be carried out 
in using the filter technique as follows: With conven- 

tional parameters (expressed in lattice units and ra- 
dians) we have the normal equations 

A ~ = B .  (2) 

We now apply a congruent transformation H (the 
superscript T denotes the transposed matrix) 

(HTAH)H-1e = H r B  (3) 

so that translation parameters are referred to an ortho- 
normal basis and angular parameters are expressed in 
units of tpi. By (3) we have e = H e H  (the subscript H 
denotes the transformed system). With oblique crystal 
systems H possesses a non-diagonal 3 x 3 block for the 
three translation parameters of a group. For angular 
parameters the corresponding section in H is diagonal 
and has values of e-a. Now we diagonalize the system 
(3) by determining the eigenvalues of AH--HTAH so 
that 

A = TTAHT with T T = T -1 . BA = TTHTB.  

The solution in the diagonalized system is 

£A =A-1BA . 

In (4) we apply a filter matrix F 

(4) 

and finally obtain 
l;.4V = FA-1BA , (5) 

e~, = HT~:4 F (6) 

for the shifts of the conventional parameters which we 
shall actually use instead of the solution e given by (2). 

Filtering with respect to the magnitudes of the eigen- 
values of the normal matrix means that we select 'eigen- 
parameters'  (we can only compute their shifts) accord- 
ing to: (1) the scattering power of an 'eigenatom' 
(which often does not exist as a physical unit), and (2) 
to what degree the actual set of data determines the 
position of that 'eigenatom' (since a summation over 
the derivatives of the measured structure factors is 
carried out in the elements of the normal matrix). A 
large eigenvalue means that, in the mean over all struc- 
ture factors, the derivatives with respect to the 'eigen- 
parameter '  are large. Consequently, a change in a 
dominant 'eigenparameter' (i.e. an 'eigenparameter' 
which belongs to a large eigenvalue) gives rise to large 
changes in the structure factors. Therefore, the domi- 
nant 'eigenparameters' are those which reduce the sum 
of the squares of the errors most and are thus most 
efficient in fitting the data. 

The increase in the range of convergence by first ad- 
mitting the dominant 'eigenparameters' can be under- 
stood as follows. We assume a number of equal atoms 
whose parameters are correlated, and whose positions 
are determined equally well by the data. The orthog- 
onal transformation, which diagonalizes the normal 

A C 24B - 5* 
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matrix, then provides a number of equal 'eigenatoms', 
whose positions are no longer determined equally well 
by the data. The spectrum of how well the positions 
are determined corresponds to the spectrum of the 
eigenvalues. The geometrical part of the derivatives 

• with respect to the dominant 'eigenparameters' will be 
large in the mean over all structure factors, and this 
means that the computed dominant eigenshift has a 
high probability of being correct with respect to con- 
vergence. As the eigenshift produces changes in the 
position of all the atoms (by virtue of the assumed cor- 
relation), the filter technique provides shifts which have 
a high probability of being correct. It is obvious that 
the filter technique becomes more effective the larger 
the spread of the spectrum of the eigenvalues. High 
correlation always causes a large spread. For two par- 
ameters, for example, which have equal diagonal ele- 
ments all=a22, the two eigenvalues are 21=alx+alz 
and 2 2 = a n - a l a .  (If there is only little correlation 
present, filtering can be done by hand, and then this 
technique does not offer a new tool.) This suggests that 
the filter technique may be applied to 

(1) rigid-body, molecular parameters, and parameters 
which are reduced by equations of constraint 
(Scheringer, 1965) 

(2) parameters of the single atoms which are highly 
correlated due to a small or unbalanced set of data. 

The above considerations on the improvement of 
convergence are, however, only valid if we assume that 
a sufficient number of structure-factor functions behave 
monotonically in the desired range of convergence. 
If  this does not hold, too many incorrect derivatives 
will be calculated with respect even to the dominant 
'eigenparameter', which prevents convergence. There- 
fore the high-angle reflexions, whose structure-factor 
functions are most wavy, should be excluded in the 
initial stage Of the refinement. This is particularly im- 
portant when the filter technique is applied to rigid- 
body and molecular parameters, since the range of 
convergence can be much larger (about 1 A) than the 
monotonic range of the absolute value of a high-angle 
structure-factor (e.g. 0.25 A for Miller index h = 20 and 
lattice constant a = 20 A). 

4. Numerical results 

In order to test how much the range of convergence 
is enlarged by filtering, we have written filter programs 
for the refinement of rigid-body and molecular param- 
eters for the IBM 7090/7094 computer. The already 
existing programs without filtering (Scheringer, 1963a, 
1965) were modified in the following way. For the 
positional parameters a full matrix is calculated, trans, 
formed and diagonalized. (A second full matrix which 
is simply inverted can be calculated for scale factors 
and an overall temperature factor.) The transformation 

of the parameters may either be carried out on the 
derivatives or on the established matrix. With oblique 
crystal systems it is simpler to carry out the parameter 
selection by calculating the transformation matrix H 
and then H•AH and HTB; therefore we have adopted 
this procedure in our program. For the calculation 
of the eigenvalues and -vectors we have used the 
FORTRAN program BCHOW by D.W. Matula, in 
which a non-iterative method is applied. For the filter 
procedure we have written a special subroutine (see 
below). 

For the successive admission of the eigenshifts we 
have developed a suitable criterion. The criterion 
which has been given by Diamond (1966) is not ap- 
propriate to structure refinement. (Furthermore, Dia- 
mond's criterion (i) is based on a claimed inverse 
proportionality between the magnitudes of the eigen- 
values and eigenshifts which does not exist, cf. § 2.) 
Our criterion is a function of the R value used in 
statistical tests (cf. Hamilton, 1965) 

S w(Fobs--IFcalol) z ) x/2 
Re = S wF2obs 

Let R~ be the initial value of Re (Re of the first cycle), 
and R~ the value of Re at which all parameters should 
be admitted to the refinement. (Values of R~ will be 
discussed below.) We define S =  Ra/R~ for the current 
cycle, and Sr=R~/Re. In any cycle we admit eigen- 
shifts which belong to eigenvalues 2 > 2v with 

2F = 3 g(S) x trace, n >_ 4 .  
n 

The trace is calculated in every cycle. It varies roughly 
by less than 10% of its value throughout the refinement. 
n is an integral number, and is steadily increased by 
the program if necessary. The function g(S) is a simple 
straight line g(S)= a + bS, which has to satisfy g(1)= 1 
and g(S r) = 0. Hence b = 1/(1 - S r) and a = 1 - b. The 
admission of eigenshifts is governed in the following 
way: In the first cycle n is increased by steps of 1 (and 
thus 2F decreased) as much as necessary to admit a 
preset number Ns of eigenshifts. (Values of Ns will 
be discussed below.) Further eigenshifts are admitted 
by the decrease of g(S) in the following cycles. More- 
over, it is ensured that in any succeeding cycle the 
number of admitted eigenshifts cannot be decreased. 
This is achieved by increasing n as much as necessary. 
(If n becomes equal to 3000 all parameters will be ad- 
mitted.) In order that the refinement may not come 
to a halt by deficiency of parameters an additional 
device is installed: In the 5th, 7th, 9 th . . .  cycle a further 
eigenshift is admitted, if in the 4th or 5th, 6th or 7th, 
8th or 9 th . . .  cycle the decrease of g(S) does not allow 
the normal admission of at least one further eigenshift. 
This is also achieved by increasing n. R~ and Ns have 
to be provided as data, all other quantities are com- 
puted. (We have also tried parabolas for g(S) with 
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various slopes at S =  1, but did not obtain any signifi- 
cant improvement.) 

The increase of the range of convergence with filter- 
ing has been determined with the structure of phenol 
(PH) (Scheringer, 1963a, b) and of 1,3,5-triphenyl- 
benzene (TR) (Farag, 1954; Scheringer, 1965). With 
phenol we have three rigid groups with 17 parameters 
to be refined, with 1,3,5-triphenylbenzene we have one 
molecule with 8 parameters (2 translation and 6 angular 
ones). Scale and temperature factors were kept con- 
stant at their previously refined values. For both struc- 
tures reduced sets of data with 250 and 200 low-angle 
reflexions respectively were used (Table 1). In columns 
2-5 of Table 1 the deviations of the parameter values 
from their correct values are given. Columns 7 and 8 
give the mean and maximum distances in A through 
which the atoms have been moved during the refine- 
ment. (The values of Re are only roughly equal to the 
conventional R values, and for poor trial structures 
we often have Re > R by several per cent.) 

We found that, with filtering, Re decreases slowly 
in the first few cycles, even in case of correct conver- 
gence. Without filtering, Re decreases more rapidly in 
the first few cycles, by virtue of the larger number of 
parameters being refined, but then often comes to a 
halt before the structure minimum is reached. Refine- 
ments which converge without difficulty do so faster 
without filtering (here filtering only acts as a brake.) 
Therefore it is important to filter only in that range 
in which convergence is obtained with difficulty or not 
at all. This largely determines the value of R~, although 
a sharp numerical limit can rarely be given. In Table 1 
we have used R~ =0.45 for all refinements (except for 
PH6 with R~=0.35 and PH1 w i t h / ~ =  0.40). R~=0.45 
is reasonable for rigid-body and molecular parameters 
because, in cases of groups having 6 atoms or more, 
the range of convergence for these parameters is already 
large without filtering and the R~-values are usually 
> 0.45 (Table 1). (If there also are single-atom param- 
eters, it is advisable to choose a smaller value of R~, 
about 0.40-0.35 depending on the problem.) The 
refinements PH1-4 and PH6 may illustrate the above 
(see Table 1): With PH1 (R~=0.40) and PH6 (R~= 
0.35) filtering acts as a brake; without filtering no false 
minimum is encountered. With PH2 at Re=0.40  a 
weak false minimum occurs and both filtering and no 
filtering achieve the same speed of convergence (24 
cycles). With PH3 the false minimum is more pro- 
nounced; without filtering convergence is hardly pos- 
sible and only obtained in 35 cycles (with filtering con- 
vergence is achieved in 25 cycles). With PH4 no con- 
vergence is obtained without filtering whereas with 
filtering the false minimum is ruled out. 

The number of eigenshifts to be admitted in the first 
cycle, Ns, should be about ¼-½ of the number of par- 
ameters; perhaps somewhat less, if there are many 
parameters. The admission of too few eigenshifts re- 
tards the refinement, too many destroy the effect of 
filtering. We have used Ns=6 for phenol (17 param- 

eters) and Ns=3 for 1,3,5-triphenylbenzene (8 par- 
ameters). Ns = 3 was found to be optimum with TR2. 
Ns= 2 decelerated the refinement by 4 cycles; Ns=4 
was too poor a filter and decelerated the refinement 
by 2 cycles. In any case we suggest that, before the 
actual refinement is started, one cycle should be cal- 
culated and the distribution of eigenvalues inspected 
in order to establish a good choice of Ns. 

In order to apply the filter technique successfully the 
spectrum of eigenvalues should not be too narrow. 
(With PH we found values of 2min/2max ranging from 
0.025 to 0.008; with TR values from 0.115 to 0.070.) 
This always holds with matrices of rigid-body and 
molecular parameters, since these parameters are al- 
ways highly correlated. If there are heavy atoms pres- 
ent, filtering automatically provides that the positions 
of the heavy atoms will usually be determined first. 

With the use of the filter technique the computing 
times are only slightly longer. For phenol, 20 cycles took 
12.63 minutes without filtering and 12.75 minutes with 
filtering on the IBM 7094 (we used magnetic tapes to 
store structure-factor data). It is possible that with very 
large matrices (of order > 100) the computation of 
eigenvalues and eigenvectors takes more time than the 
simple matrix inversion. 

From the results of Table 1 we conclude that with 
rigid-body and molecular parameters the filter tech- 
nique provides an increase in the range of convergence 
of about 0.1-0.2 A. 

I am indebted to the Deutsche Forschungsgemein- 
schaft for financial support. The computations have 
been carried out on the IBM 7094 computer of the 
Deutsche Rechenzentrum, Darmstadt. I should like to 
express my thanks for the generous service at the 
Rechenzentrum. I am grateful to Dr H.J.Milledge, 
London, for supplying the X-ray data of 1,3,5-tri- 
phenylbenzene. 

APPENDIX 

Derivation of equation (1) 
We formally introduce an angular measure b =2~zi, 

for a given angular parameter. We then have for the 
diagonal element of the normal matrix of this par- 
ameter 

a~b = Z wn [ OlFnl ] 2 
h \ ~b ] 

. 3 ~ l F h l  Oxi~ OlFhl Oxke 
= Z  Z ~ w ~  

h i ,k  , ~ X t s  8b 3xgt 3b 
(A1) 

IFhl is the absolute value of the hth structure factor, 
the coordinates x~s, xkt are referred to a Cartesian basis, 
i and k denote the atom, s and t the directions in space; 
wa is the weight of the hth structure factor, and n is 
the number of atoms which are moved by the param- 
eter. With the assumptions of an ideal set of data and 

• isotropic atomic scattering powers the terms for dif- 
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ferent atoms (if=k) are zero because of different geo- 
metric structure factors, and we are left with 

3 ax~s Ox~t Olrnl Olfhl (A2) 
i = I  s, t = l  3b 3b h 

For small changes of the angle we have 

3Xis Ab~ ri 
c3b - Ab- cos (Ab, s) = __COSr (Ab, s) 

Ab~ being the arc by which the ith atom would be 
moved, and r~ being the distance of the ith atom from 
the axis of rotation, cos (Ab, s) is the direction cosine 
of the directions of Ab and s. With the assumptions 
mentioned above we have 

alFnl O lFn! =kZ~&, (A3) 
wh axe8 ax. 

with fist= 1 for s = t ,  and fist=O for s e t ,  k being a 
constant. We now make use of the relation 

and obtain 

3 
~w cos2(Ab, s )= 1 , 

s=l 

n 

aoo= k S r~ Z~/? 2 . (A4) 
i=l 

We introduce the postulate aob=k _r Z~, and obtain 
equation (1). 

Transformations for  reduced parameters 
Here we give the necessary transformations for par- 

ameters which are reduced by equations of constraint. 
First an orthonormal basis must be chosen for the unit 
cell, to which the coordinates of the single atoms are 
referred. Then the equations of constraint have the form 

Kcc°n(A) + K ° = O ,  (A5) 
3 

g o = r ~ k - -  { , ~ , [ x ° s l ( A ) - - X ° k s ( A ) ] 2 } l / 2  , (A6) 
s = l  

3 
K~s= - [x°~(A) - X°s(A)]{ X [x°~(A) - x°~(A)]2}-l/2, (A7) 

s=l 

c°n(A) = Rt; red + R o (A8) 

[cfi Scheringer (1965), equations (4) to (7)]. The ele- 
ments of R are now dimensionless. The reduced par- 
ameters erea(A) and the rectangular matrix R have 
to be transformed for the filter procedure according to 

~red__ Genoa(A) Ra = RG -1 (A9) 

G is a diagonal matrix whose order is equal to the 
number of reduced parameters, and has an element ~', 
as defined by (1), for each parameter respectively. The 
sum in (1) has to be taken over all atoms which are 
moved by the parameter, r 2 is calculated according to 

rZ=(R~q)Z+(R~q)E+(R~q) z , (A10) 

where R~q (R~, R~q) is an element of R [R in equation 
(A8)], which relates the single-atom parameter x (y , z )  
of the ith atom to the qth reduced parameter. (Equa- 
tion (A 10) becomes dimensionally correct if one divides 
ri by the unit distance.) The matrix to be diagonalized 
for filtering is RTARa. The corresponding derivatives 
can be obtained directly from Scheringer's (1965) equa- 
tion (13) using the elements of Re and x~s(A). 
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